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Propagators for non-linear systems 

D G Cacucit and V Protopopescu 
Engineering Physics and Mathematics Division, Oak Ridge National Laboratory, Oak 
Ridge, TN 37831, USA 

Received 6 April 1988 

Abstract. A canonical formalism based on forward and backward propagators is developed 
for problems described by systems of general non-linear equations. These propagators are 
shown to yield the problem’s solution by propagating exactly the bulk/surface/initial 
sources. They naturally generalise to non-linear problems the Green functions of linear 
theory. Unlike the customary Green functions, though, the forward and backward ,propa- 
gators depend parametrically and non-linearly on the problem’s solution; however, the 
propagators themselves satisfy linear equations that can, in principle, be solved by methods 
of linear theory. Three examples, comprising both scalar and vector problems, are presented 
to highlight the main points underlying the application of this formalism. 

1. Introduction 

The established analytical methods for seeking solutions to non-linear equations, such 
as inverse scattering transform, Lax-pair representation and group theory, can only be 
used for special forms of operators and domains in phase spaces. On the other hand, 
geometrical and topological methods are being used in conjunction with detailed 
numerical calculations to study phenomena important and specific to non-linear prob- 
lems such as the occurrence of bifurcations, shocks and chaos. The monographs by 
Calogero and Degasperis (1982) and by Chow and Hale (1982) cover a very large 
number of aspects and references in these two areas. 

Recently, Cacuci et a1 (1988) have proposed a new formalism for solving general 
non-linear equations. This formalism is the natural generalisation to non-linear prob- 
lems of the Green function formalism in linear theory, and is canonically and exactly 
applicable to any non-linear operator equation in phase-space domains where these 
respective Giteaux derivatives exist. Fundamental to this formalism is the construction 
of advanced and retarded propagators; these propagators generalise the customary 
Green functions, to which they reduce, exactly, for linear problems. 

We have presented the fundamental ideas underlying this formalism for scalar 
non-linear equations (Cacuci et af 1988). Cacuci and Karakashian (1988) applied this 
formalism to generalisations of Burgers and Korteweg-de Vries equations, noting its 
efficiency, accuracy and straightforward computational implementation. 

The aim of this paper is to generalise the formalism to include the treatment of 
multicomponent (matrix) non-linear operator equations; in addition we present several 
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important aspects of the basic theory that were not addressed in the original formulation. 
This material is presented in 0 2, which introduces the propagators for the multicom- 
ponent non-linear systems, gives the system’s solution in terms of these propagators, 
and demonstrates the uniqueness of this solution. Section 3 presents the closed-form 
integral equations satisfied by the propagators, while Q 4 summarises the conclusions 
of our work. Specific illustrations of applying our formalism to scalar equations, a 
two-component (Carleman) system from the kinetic theory of gases and a matrix 
Riccati equation are presented in appendices Al ,  A2, and A3, respectively. 

2. Propagators for non-linear systems 

A general non-linear system can be represented in abstract form as 

N ( ~ ) +  6 r ( u )  =f+ sg (2.1) 

where N (  U )  represents the non-linear equation, r( U )  represents the non-linear 
initial/boundary conditions, f represents the volume source, and g represents the 
boundary source (including initial conditions). The source term f includes the 
inhomogeneities of the non-linear operators, so we can consider without loss of 
generality that N ( 0 )  = 0, and r(0) = 0. The 6 distributions multiplying the boundary 
terms in (2.1) allow a formally unified abstract treatment of both boundary conditions 
and operators. These 6 distributions are associated with the direct boundary space of 
the problem (Coddington and Levinson 1955), being uniquely specified for each specific 
problem under consideration. 

The system (2.1) represents an equation for an n-component vector U =(U,, 
u 2 , .  . . , U,,); for simplicity, we consider each component ui to be an element in the 
Hilbert space Lz(R) endowed with an inner product denoted by ( , ); throughout this 
work, R denotes the set (including the time domain for time-dependent problems) that 
defines the phase space for (2.1). Since we include the boundaries in the formal 
treatment, R is a closed set, containing the boundaries of the phase space underlying 
the problem. 

As before (Cacuci et al 1988), we require that the first Giteaux derivatives (see 
e.g. Nashed 1970) of the operators appearing on the left-hand side of (2.1), defined as 

[ N ’ ( u ) + G T ’ ( u ) ] h  ={(d /ds ) [N(u+  s h ) + 6 r ( u + s h ) ] } , = , ,  (2.2) 

exist; in our case, N ’ (  U )  + Sr’( U )  is a n x n matrix whose ( i j )  element is the operator 
a( Ni(  u )  + 6ri(  u ) ) / a u , .  Each of these operators depend non-linearly on U but act 
linearly on the n-component vector h. 

For an arbitrary n-component vector U, the operator adjoint to N ’ ( u ) + S T ’ ( u )  is 
defined via the usual linear duality: 

( [ ~ y u )  + ~ r y u ) l h ,  = ( h ,  [ ~ ’ * ( u )  + 6*r’*(u)lu). (2.3) 

In (2.3), N’*( U )  is the formal adjoint of N’(  U), and r*( U )  includes all surface operators 
on U. Note in (2.3), that the operator S* is not the same S distribution as in (2.1) or 
(2.2), but is a distribution associated with the adjoint boundary space (Coddington 
and Levinson 1955). To highlight this distinction, we use the symbolical notation 6”. 
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(See appendices Al-A3 for examples.) The pair {"*(U), T'*(u)} is the adjoint of the 
pair { N'(  U), r'( U)}; the explicit expression of the (ij)th element of the matrix [NI*( U )  + 
S*T'*( U ) ]  is  [a( N,( U )  + ST,( u ) ) / a u , ] * ,  obtained by taking the adjoint of each element 
of the transpose of [ N ' (  U )  + ST'( U ) ] .  This follows naturally from the definition of the 
adjoint operator in L2(fl)  x . . . x L2(fi)  = ( L2(R))". 

Following Cacuci et a1 (1987, 1988), we define the operators 

y (  u ) h  = r'( E U ) ~  dE (2.4) 5: L ( u ) h =  N'(eu)h dE il: 
Id 

and 

y * ( u ) u =  [ I " ( E u ) ] * u  d ~ .  (2.5) 

Note that the operators L, y ,  L* and y * ,  still act linearly on h and U, respectively, 
while retaining a non-linear parametric dependence on U. Note also the important 
relationship satisfied by L( U )  and y (  U): 

ib L*(u)u= [ N ' ( E u ) ] * u  de 

[L(U)+ a y ( u ) ] u  = ~ ( u ) +  6 r ( u ) .  (2.6) 

Relationship (2.6) underscores the important role played by the integrated operators 
L, L", y ,  y * :  in contradistinction to the variational operators N ' ,  NI*, y ' ,  y '* ,  it is the 
pair of integrated operators { L( U), y (  U)} that restores exactly the original non-linear 
system (2.1) when applied to U. Furthermore, it follows from (2.3), (2.4) and (2.5) 
that the (ij)th component of the (matrix) operator L * ( u ) + G * y * ( u )  is obtained by 
taking the adjoint of the (j i) th component of the (matrix) operator L ( u ) +  6 y ( u ) :  

( L * ( u ) +  6 * Y * ( 4 ) ,  = [(L(u)+ 6Y(U)) , ,I*.  (2.7) 

The backward (retarded) and forward (advanced) propagators are defined as the 
inverses of the operators L( U )  + 6 y (  U )  and L*( U )  + S*y*(  U), respectively: 

[ L ( u ) + S y ( u ) ] G , = l  (2.8) 

[ L * ( u ) + 6 * y * ( u ) ] G : =  1 (2.9) 

and 

where 1 denotes the unit operator. The propagators G, and G: are n x n matrices 
whose components are operators in L2(fi) .  Equations (2.8) and (2.9) can be written 
in terms of formal integral kernels as 

[ L ( u ( t ) ) + S ~ ( u ( t ) ) ] G ( ~ ( t ) ;  t, t ' ) = S ( t - ? ' )  (2.10) 

[ L*( U ( t )) + 6* y * ( U ( t ) ) ]  G*( U ( t ) ; t ,  t " )  = 6 ( t - t")  

and 

(2.11) 

where t is a shorthand notation for the generic variable in the domain R (including 
its boundaries). 

Since the operators L( U )  + a y (  U )  and L * ( u )  + 6 * y * (  U )  act linearly on the respective 
propagators, the relationships between the propagators and the expression for the 
solution U in terms of these propagators can be derived, as previously noted (Cacuci 
et a1 1988), in the same spirit as for the usual Green functions in linear theory 
(Butkovskiy 1982, Roach 1982). Thus, forming the inner products of (2.10) and (2.11) 
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with G*(u(t); t ,  r") and G(u(t); t ,  r ' ) ,  respectively, and taking into account (2.7) leads 
to the reciprocity relation 

G * ( u ( t ) ;  t, t ' ) =  G(u(t'); t ' ,  1 ) .  (2.12) 

In component form, (2.12) implies that (Gu)$ = (Gu),z. 

forward propagator G: as follows: firstly, by (2.1), 
The solution U of the original non-linear system (2.1) is obtained in terms of the 

U =(U, S ) - ( N ( u ) + S I ' ( u ) ,  G:)+(f+Sg, G:) 

and secondly, by (2.11) and (2.6), 

U = (U, [L*(  U )  + a*  y*( U)] Gz) - ([ L(u) + SY( u) lu ,  G 3  + (f+ Sg, G:) 

= (f+ Sg, (2.13) 

Using the reciprocity relationship (2.12) in (2.13) yields the solution U in terms of the 
backward propagator G, as 

U = ( G , , f + S g ) =  G ( u ( t ) ;  t, t')[f(rf)+6g(tf)l. (2.14) 

In the remainder of this section, we investigate the uniqueness of the representations 
(2.13) and (2.14) of the solution U in terms of the propagators G: and G,, respectively. 
Thus, consider that the system (2.1) admits a unique solution U', i.e. consider U' to be 
a solution branch free of bifurcations. We note that, by adding a homogeneous function 
of U-U' to (2.1), we obtain a different system which, however, still admits U' as a 
solution. Nevertheless, this addition modifies the form of the operators N, r and the 
sources f and g. Consequently, the operators L and y, and the propagators G and 
G* will have expressions that would differ from those obtained from the original 
system (2.1). The new set of propagators and sources thus obtained, though, should 
yield the same solution U'. In the following, we give a formal proof that this is indeed 
the case. 

J,, 

We start with two equivalent forms of the system (2.1), namely 

N,W+ a r , ( u )  = Sg, +fl (2.15) 

N*(u)+8r2(u)=Sg2+f2. (2.16) 

The system (2.15) is equivalent to (2.16) in the sense that it is obtained from (2.16) 
by a transformation that vanishes when applied to the (unique) solution I?; thus, U' 
solves both (2.15) and (2.16). In addition, we require this transformation not to 
introduce new solutions (i.e. in addition to G); this requirement is consistent with our 
initial requirement that U' be a solution branch free of bifurcations, where the Gsteaux 
derivatives of NI, N2, rl and T2 exist. Then the counterparts of (2.6)-(2.9) exist for 
both (2.15) and (2.16), and can be written as 

and 
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while the respective propagators are obtained as the solutions of the systems 

[ L 1 ( 4 + ~ y 1 ( 4 l G ,  = 1 (2.19) 

and 

[L,(U")+ Sy,(U")]G2= 1. (2.20) 

We need to show that the same solution U" is obtained by using either the propagator 
G1 from (2.19) or the propagator G2 from (2.20), i.e. 

U" = ( Gi, f; + Sgi) = (f; + Sg,, G f )  i = 1 , 2  (2.21) 

where the inner products have the same meaning as in (2.13) and (2.14). The notation 
for the proof of (2.21) can be simplified considerably by interpreting the propagators 
GI and G2 simply as operators so that the first equality in (2.21) can be rewritten as 

= Gi(fi + Sg1) = G2(f2+ k 2 ) .  (2.22) 

To prove (2.21), we start by considering (2.20) to be a linear perturbation of (2.19); 
the Dyson formula, which relates the resolvents of perturbed and unperturbed 
operators, can then be applied to (2.19) and (2.20) to obtain 

G2= GI - G ~ [ L ~ ( ~ ) + S Y ~ ( U " ) - L ~ ( U " ) - S Y ~ ( U " ) ] G ~ .  (2.23) 

Suppose now that we express the solution in terms of the propagator G2: 

6 = G2(f2+ &2). (2.24) 

Taking into account (2.23), (2.24), (2.17) and (2.18), and using the linearity in Gi of 
the operators Li ( i  = 1,2) allows us to perform the following sequence of operations: 

* 
= U  QED. (2.25) 

Remark. By construction, the operators L( U), L*( U), y(  U), and y*( U )  are canonically 
determined from N ( u )  and r(u). However, one could find operators distinct from 
the pair { L ( u ) ,  ?(U)} that would still give the right-hand side of (2.6) if they were 
replaced on the left-hand side of (2.6). All of these pairs of operators, { L j ( u ) ,  y j ( u ) } ,  
and their respective adjoints, {Lj*(u) ,  y j * (u ) }  are equivalent to the pairs {L(u), y ( u ) }  
and { L * ( u ) ,  ?*(U)}, respectively, in that they all give the correct solution U (to the 
original non-linear equation) in the form (2.14) provided, of course, that the respective 
boundary terms are properly taken into account. To prove this fact, one uses (2.23)- 
(2.25) forf2+Sg2=fl+6gl =f+Sg. 
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3. Integral equations for propagators 

Consider (2.10) for a known vector U' and (2.11) for the actual solution U' of the 
original system (2.1), i.e. 

[L(u ' )+  GY(UO)]G,O= 6 (  t - t ' )  

[L*(U')+6*y*(U')]G$ = S ( t -  t " ) .  (3.2) 

([L(u0)+ 6y(u')]Guo, G$) = GZ 

( G,o , [ L* ( U' ) + 6 * y * ( U' ) 3 G $) = G,o . 

G$ = G,o+ (G,o, [L*(  U') + a*?*( U') - L*(U') - S*y* (  U')]Gf).  

(3.1) 

and 

Forming the inner product of (3.1) and (3.2) with G$ and G,o, respectively, yields 

(3.3) 

and 

(3.4) 

Using the duality relationship (2.7) and subtracting (3.4) from (3.3) leads to 

(3.5) 

Relationship (3.5) is a closed-form non-linear integrodiff erential equation satisfied by 
the forward propagator G:.  A similar procedure can be applied to the systems 

[ L (  U') + 6y(  C)]G,j = 6(  t - t') 

[ L*( U') + S* y*( U')] G ~ o  = 6(  t - t")  

(3.6) 

and 

(3.7) 

to obtain the closed-form non-linear integrodiff erential equation for the backward 
propagator Gi : 

G,j= G E O + ( [ L ( U ' ) + S ~ ( U ' ) - L ( U ' ) - ~ ~ ( C ) ] G , ~ ,  Gzo). (3.8) 

The non-linear character of (3.5) and (3.8) stems from the fact that the operators 
{L*( C), y*( U')} and { L( C), y (  U')} depend non-linearly on U', while U' depends, in turn, 
on the propagators G$ or G; via (2.13) or (2.14), respectively. The integrodifferential 
character of (3.5) and (3.8) stems from the combination of the integral character of 
the inner product and the differential character of L* and L, respectively. In several 
important particular problems, though, such as the Burgers and the Korteweg-de Vries 
equations, (3.5) and/or (3.8) become purely integral equations (Cacuci and Karakash- 
ian 1988). Note also that (3.5) and (3.8) are exact and their non-linear character stems 
not from closure approximations but reflects exactly the non-linearities of the original 
system (2.1). 

Because they retain the full non-linear information contained in the original problem 
(2.1), equations (3.5) and (3.8) may be difficult to solve in practice. Moreover, they 
yield directly only the propagator, so the solution to the original system must sub- 
sequently be computed from the convolution expressions given by (2.13) or (2.14). 

An alternative, and possibly more efficient, approach is to obtain an integrodifferen- 
tial equation, similar to (3.5) or (3.8), for the solution U' itself. For this purpose, we 
note that since the function U' is known, equation (3.7) can, in principle, be solved 
to obtain G:o as the inverse of the linear operator L*( U') + S * y * (  U'). Then, the solution 
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U' can be obtained by using (3.7), (2.6) and (2.1), the linearity of the operators L*, 
and y* ,  and performing the following sequence of operations: 

U' = (U', [L*( U') + 6*y*(uo)]G$o) 

=(U', [L*(U') + S*y*(U')]G3)+ (U', [ L*( U') + S * y * (  U') - L*(U') - S*y*( U')]GZo) 

= ( [ L ( J )  + Sy(U')]U', GZo)+(U', [L*(  U') + S*Y*(U' )  - L*(U') - Sy*(U')]G3) 

= (f+ Sg, GEo)+(U', [L*(u') + S*Y*(U' )  - L*( U') - 6*y*(  U')]GZo). (3.9) 

The last equality in (3.9) represents, in general, an integrodifferential equation for the 
solution U' in terms of the known sources f and g, and the known propagator GZo. 
However, as discussed in the foregoing, equation (3.9) may reduce to a purely integral 
equation; two such instances of particular importance are the Burgers and the Kor- 
teweg-de Vries equations. In these cases, very efficient and accurate methods of 
numerical and functional analysis can be used to solve, as shown by Cacuci and 
Karakashian (1988), these otherwise difficult initial/boundary value problems. 

4. Conclusions 

In this work, we have extended to multicomponent (i.e. vector) problems the canonical 
formalism originally introduced by Cacuci et a1 (1988) for solving non-linear problems 
in terms of propagators that generalise the customary Green functions in linear theory. 
Fundamental to the development of our formalism as the non-linear analogue of the 
Green function method are the operators L( U )  and L*( U); these operators are obtained 
by functionally integrating the Gsteaux derivative N ' (  U), of the original non-linear 
operator N (  U), and its adjoint [ N'( U)]*, respectively. Also essential in developing 
our formalism is the observation that the relationship [ L( U )  + ay(  u)]u  = N (  U )  + y r (  U )  
is satisfied by L( U), y(  U), but not by the variational operators N'(  U )  and y'(  U). Thus, 
the forward and backward propagators GE and G,, which are solutions of equations 
involving the operators L*( U )  and L( U), carry all the information needed to solve the 
original non-linear equation. This is the very reason that the propagators GZ and G, 
generalise the customary Green functions from linear theory; in particular, when the 
original problem is linear, GE and G, reduce to the usual Green functions, since, in 
this case, the operators L and L* become independent of U and, consequently, so do 
GE and G,. 

We have shown that the advanced and retarded propagators GZ and G, satisfy a 
reciprocity relationship analogous to that satisfied by the customary Green functions. 
We have further shown that these propagators can be obtained as solutions of equations 
that are, in general, both non-linear and integrodiff erential in character; note, though, 
that the order of the highest derivative appearing in these equations will always be 
lower than the order of the highest derivative appearing in the original non-linear 
system. Furthermore, in many important particular cases, such as the Burgers and the 
Korteweg-de Vries equations, the integrodifferential equation for one or both of the 
propagators reduces to a purely integral equation. 

We further noted that the integrodifferential (or integral) equations for the propa- 
gators are exact, and their non-linear character reflects exactly the non-linearities 
present in the original system. This is in contradistinction to non-linearities that may 
appear in the expressions of the Green functions in many-body and field theories, 
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where such non-linearities are not intrinsic to these theories but are introduced as a 
result of approximations needed to close the respective equations. 

Using the advanced or retarded propagators, we have converted the solution of 
the original boundary/initial value problem into an integral form. In principle, such 
a conversion is always advantageous, even if the resulting integral form is non-linear. 
This is both because ( a )  the contraction principle and/or fixed-points theorems could 
be applied to this integral form (but not to the original non-linear boundary/initial 
value problem) to prove existence and uniqueness, and (b) most numerical analysis 
and computational methods are comparatively more mature and less difficult to imple- 
ment for integral equations than for differential ones. Note, though, that because the 
non-linearities of the original problem are inherently and exactly incorporated into 
the integral equations produced by our formalism, these integral equations may still 
be very difficult to solve in practice. 

The formal character of the derivations underlying our formalism is underscored 
by the fact that we have not addressed, in general, the issues of existence, well- 
posedness, continuous dependence on data, etc; these issues can only be addressed in 
detail for each specific problem and functional setting. 

Appendix 1 

A simple illustration that nevertheless highlights the main features of applying the 
general formalism presented in §§ 2 and 3 can be performed by considering the scalar 
Riccati equation 

( A l . l )  N ( u )  = du /d t+  u2 = 0 

with initial condition 

l imu(t)=uo>O. (A1.2) 
110 

Solving this Riccati equation in LJO, ?,I by standard procedures gives the unique 
solution 

U0 
U( r )  = -, 

uot + 1 (A1.3) 

We remark that here, as in the following two appendices, we use the L, setting only 
to maintain a consistently unified framework with the theoretic §§ 2 and 3.  In the 
remainder of this appendix, we will apply the general formalism developed in 90 2 
and 3 to solve this Riccati equation and recover the solution (A1.3). 

[0, t,], 
6r( U )  + s ( t ) u (  t ) , f +  0, and 6g -, a( t )uo,  respectively. Besides ( A l . l ) ,  we also consider 
the following equations: 

Comparing ( A l . l )  and (A1.2) with (2.1) leads to the identifications: 

du U0 - + U - = o  
dt  uot+l  

U0 
U + - = o  

du U0 
-+U-- 
d t  uot + 1 uot + 1 

du U; -+ 
dt  ( u o r + l ) 2 = 0  

(A1.4) 

(A1.5) 

(A1.6) 
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for t E (0, $-), all subject to the initial condition (A1.2). Note that each of these equations 
admits a unique solution in L,[O, t,] and this solution is, in all cases, given by (A1.3). 
Of course, equations (A1.4), (A1.5) and (A1.6) are all equivalent to (Al.1).  The purpose 
for considering these four equivalent forms of the same equation is to illustrate that 
although the application of the general formalism presented in 99 2 and 3 will yield 
distinct expressions for the respective operators L( U )  and hence for the respective 
propagators G(t, t ’ ) ,  these propagators will all yield the correct, unique solution (A1.3) 
in each case. 

Performing the operations leading to (2.8) on ( A l . l ) ,  (A1.4), ( A l S ) ,  and (A1.6) 
shows that the backward propagators G (  t, t ’ )  for these four equations are the solutions 
of 

d G  
-+uG=S( t - t ’ )  
d t  

d G  U O  -+- G = S ( r  - t ‘ )  
d t  uot+ 1 

d G  uo -+- G -  G = 8 ( t  - t ‘ )  
d t  uot+l  

-- -8( t - t ’ )  d G  
dr 

respectively; all of these propagators are subject to the initial condition 

G(0, t’) = 0. 

The solutions to (A197)-(A1.11) are 

G (  t ,  t’) = H (  t - t ’ )  exp 

G (  t, t ‘ )  = H (  t - t ’ )  exp (-{,l&ds) =H(t-t‘)- uot’+ 1 
uot + 1 

uot’+ 1 
G (  t ,  t’) = H (  t - t‘) exp[-( t ’  - t ) ]  - 

uot + 1 

G (  r, t ’ )  = H (  t - t ’ )  

respectively, where H (  t - t ’ )  is the Heaviside function 

f o r t - t ‘ z 0  
for t - t‘ < 0. 

H (  t - t ’ )  = 

Therefore, equation (2.14) yields 

u ( t )  = G (  t ,  t ’ ) (  f ( t ’ )  + S (  t ’ )  uo) dt‘  16 

(A1.7) 

(Al.8) 

(A1.9) 

( A l .  10) 

( A l . l l )  

(Al .  12) 

(A1.13) 

(A1.14) 

(A1.15) 

(A1.16) 

( A l .  17) 

as the general, although implicit, expression for the solution of each of (Al .I) ,  (A1.4), 
( A l S ) ,  and (A1.6). Replacing equations (A1.12)-(A1.15) in (A1.17), and noting that 
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the external source f ( t ' )  is non-zero only for ( A l S ) ,  leads to 

u ( t )=exp(  - l 0 ' u ( ~ ) d s )  

U0 u( t )=-  
uot + 1 

(Al .  18) 

( A l .  19) 

U0 dt'+e'- 
uot + 1 

(Al.20) U0 - U0 dt '+exp(t)  = -lo1 exp[-(t'- t ) l -  U0 

uot + 1 u o t + l  u o t + l  

dt '+  G,,(O, t )  = - 
uot + 1 

U0 4 
( uot'+ I ) *  

(Al.21) 

respectively, as solutions to equations ( A l . l ) ,  (A1.4), (A1.5) and (A1.6). Note that 
(Ale19)-(Al.21) are identical to the explicit solution (A1.3), while (A1.18) solves the 
original equation implicitly. 

Appendix 2 

In this appendix, we illustrate the application of the general formalism presented in 
$ 5  2 and 3 to a system of two non-linear equations. This example is taken from the 
kinetic theory of gases and is known as the homogeneous Carleman system (Carleman 
1957) for two gases of concentration u1 and u2: 

(A2.1) 

d"z= 
dt  

u2( 0) = 242.0 > 0. (A2.2) 

In the real space L2[0, $3 x L2[0, t f ] ,  the solution of this Carleman system is readily 

u , + u 2 = n  u1 - u2 = j (A2.3) 

obtained by introducing the transformation 

in (A2.1) and (A2.2); the resulting equations are 

dn ld t  = 0 (A2.4) 
and 

d j ld t  = -2nj (A2.5) 
with solutions 

n = ~ , , ~ + u ~ , ~ = C  (A2.6) 
and 

j = ( u , , ~  - u ~ , ~ )  e-2ct. (A2.7) 
Using equations (A2.6) and (A2.7) in (A2.3) gives the solutions ul( t )  and U*( t )  of 

(A2.8) 

the Carleman system as 

ul( t )  = 5[ c + ( u , , ~  - u ~ , ~ )  e-2C'] 



2409 Propagators for non-linear systems 

and 

~ ~ ( t ) = j t [ ~ - ( u ~ , ~ -  u2,d e-2C']. (A2.9) 

Introducing the two-component vectors U = ( u1 , U,), N = (NI ,  N 2 ) ,  r = (r,, r2), 
f = ( O , O ) ,  and g = ( ~ ~ , ~ ,  u ~ , ~ ) ,  we recast (A2.1) and (A2.2) in the form of (2.1), i.e. 

du1 
d t  

d U 2  

d t  

straightforward manner: we have 

N , ( u ) +  sr,(U) =-+ - U:+ s( t ) u l  = s ( ~ ) u , , ~  

N,(u)+ 6r2(u)  =-+ U:- U:+ s( t )u ,= s ( ~ ) u ~ , ~ .  

( A2.10) 

The application of the general formalism developed in Q 2 follows now in a 

"(U)+ sryu) 
+ 

dT2( u)/du, dT,( u)/du2 
dNi(u)/du2) (dr i (u) /dui  

= (dd~~j~i:dd:: dN2( u)/du2 

- 2 ~ 1  d ld t  + 2 ~ 2  
(A2.11) 

and, replacing U by EU in (A2.11) and integrating over E from 0 to 1,  we obtain 

-u1 d/d t+u ,  
L ( u ) + S y ( u ) =  (A2.12) 

The formal adjoint, N'*( U), of N'(  U )  is determined by the usual linear duality so that 

-2ii2 -d/dt + 2ii2 " * ( u ) + S * y * ( u )  = (A2.13) 

where the bar denotes complex conjugation. Since we work in real spaces, U ,  = iil and 
u2 = U,. Replacing U by EU in (A2.13) and integrating over E from 0 to 1 gives 

-d/dt+ U I  
L * ( u ) + S * y * ( u ) =  (A2.14) 

The Carleman system can now be solved by using either the forward or the backward 
propagators. In the following, we will use the backward propagator G(t, t ' ) ,  This 
propagator satisfies (2.8), where L(u)+ 6 y ( u )  is given by (A2.12): 

(A2.15) 

subject to the initial conditions 

G,(O, t ' )  = 0 f o r i , j = l , 2 .  (A2.16) 

In component form, (A2.15) is 

d G l l / d t + u l G 1 ~ - ~ 2 G , l = S ( t - t ' )  

dGi,,/dt+ u , G , ~ - u > G ~ ~ = O  

dG21/dt-ulGI1+ U2GZ1=O 

(A2.17) 

(A2.18) 

(A2.19) 
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Adding equations (A2.17) and (A2.19) and integrating over f gives 
(A2.2 1 ) 

the integration constant being zero in view of (A2.16). Similarly, adding equations 
(A2.18) and (A2.20) and integrating gives 

G22+G12=H(t-f'). (A2.22) 
Using equations (A2.21) and (A2.22) in (A2.17) and (A2.19), respectively, and perform- 
ing the respective integrations leads to 

GI1 + G2l= H (  t - t ' )  

Gll(t, t ' ) = H ( f - f ' ) ( e c i r ' - r ) + J r  eC('-" u2(7) d r  (A2.23) 
1 '  

G2,(f, t ' ) = H ( t - t ' )  l -ec( r ' - r ) -  1' e C ( T - r ) ~ 2 (  7) d r )  

G22(t, t ' ) =  H ( t - t ' ) ( e c ( r ' - l ) + l r  I '  e C ( ' - r ) ~ 1 ( 7 )  d r )  

(A2.24) 

(A2.25) 

I '  ( 

(A2.26) 

Using equations (A2.23)-(A2.26) in (A2.14) gives the solution U = ( u l ,  u2) to the 
Carleman system as 

ul(t)  = ul,oGll(t, O)+ uz,oG12(t, 0) 

= ~ C + f ( u , , , - ~ ~ , ~ )  e -2c1 

and 
(A2.27) 

= $ C  -f( ul,o - u ~ , ~ )  e-2cr. (A2.28) 
As expected, equations (A2.27) and (A2.28) are identical to (A2.8) and (A2.9), respec- 
tively. 
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Just as in appendix A, it is instructive to consider the following equivalent form 
of the Carleman system, obtained by using equation (2.6) in (A2.1) and (A2.2): 

dulldt  = -C( til- ~ 2 )  

duzldt = -C( ~2 - ~ 1 ) .  

This equivalent representation of the Carleman system leads to 
d/dt  + C ( -C d / d t + C  L ( u )  = 

-d/dt + C 
-d/dt + C L*( U )  = 

and, hence, to the following system for the backward propagator G( t, t'): 

dG1 , /dt  + CGI 1 - G2l C = 6( t - t ' )  

dGIJdt+ CG12-CG22=0 

dG2l/dt-CGI1+CGzl=O 
dG2Jdt- CG12+CG22=S(t-t'). 

The solution of equations (A2.32)-(A2.35) is 

G l l (  t, t') = fH( t - t ' ) (  1 +ezc("-') 1 
G21(t, t') = f H ( t - r ' ) ( l  ) 

G22( t, t') = iH( t - r ' ) (  1 + 1 

G12( t, t ') = fH( t - t ')(  1 - 1 
= Gll(t, t ' )  

= G21( t, t'). 

Using now equations (A2.36)-(A2.39) in (2.14) leads to 

ul( t )  = ul,oGll(t, O)+ UZ,OG12(f, 0) 
= ul,ot(1+e-2C')+y,of(1 -e-2C') 
= f C + t ( ~ , , ~ -  u ~ , ~ )  e-2cr 

and 

(A2.29) 

(A2.30) 

(A2.31) 

(A2.32) 

(A2.33) 

(A2.34) 

(A2.35) 

(A2.36) 

(A2.37) 

(A2.38) 

(A2.39) 

(A2.40) 

(A2.41) 
Thus, although the operators L and L*, and consequently the propagator G(  t, t ' ) ,  

for the system (A2.29) are distinct from their counterparts for equations (A2.1) and 
(A2.2), the final expression obtained for the solution U (i.e. equations (A2.40) and 
(A2.41) and equations (A2.27) and (A2.28), respectively) is the same in both cases. 
This outcome is similar to that obtained for the scalar case presented in appendix 1 .  
Note also that the system (A2.29) is linear in U (in contradistinction to the system 
(A2.1) and (A2.2), which is non-linear) and the propagator G(t, t'), i.e. equations 
(A2.36)-(A2.39), given by the general formalism of 0 2 is, in this case, the same as the 
Green function that would have been obtained by using the well known methods of 
linear theory. 



2412 D G Cacuci and V Protopopescu 

Appendix 3 

In this appendix, we apply the canonical formalism presented in $ 0  2 and 3 to the 
matrix Riccati equation 

du ld t  = b + BU - U C ~ U  (A3.1) 

where 

U=(::) b = ( : l )  B = ( o  0 0  o) cT=(c1 ,c2) .  (A3.2) 

Considered as an evolution equation in L2[0,  tf] x L2[0, tf] subject to the initial condition 

(A3.3) 

equation (A3.1) admits the unique solution 

1 c2(b2uIo- b luZO)+ bl[uocosh(t@)+fis inh(t@)]  

1 c , ( b , ~ ~ ~ -  b2uIO)+  b2[u0 cosh(t@)+fis inh(t@)]  

(A3.4) "'=viSs 

"'=z 
@ cosh( t 4 )  + uo sinh( t @ )  

4 cosh( t @ )  + uo sinh( r4) (A3.5) 

where 

vo= C,U,,+ C2U20 (A3.6) 

and 

p = c, b, + c2b2. (A3.7) 

For this Riccati equation, the equations for the forward and backward propagators are 

L*(u)G:(t; t ' )  

-d ld t+  C ~ U ,  + fc2~2  I C ,  U2 GT, GT2 
- d / d t + ~ c , u , + c 2 u ~ ( G f ,  G:] 

=s( t - t l ) (o  1 0  1)  

G:( t;  t') = 0 

and 

at t = tr i.e. for t > t' 

L(u)Gu(t,  t " )  

d / d t + c , u , + ~ c 2 u 2  f C 2 U 1  g12 
d/dt  + $cl U ,  + c2u,> ( zi: G2,> 

Gu( t ,  t")  = 0 

respectively. 

at t = O  i.e. for t < t" 

(A3.8) 

(A3.9) 

(A3.10) 

(A3.11) 
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Note that equations (A3.8) and (A3.10) are linear in G: and G,, respectively, so 
they can be solved by the standard methods for first-order matrix differential equations. 
Thus, the fundamental matrix for (A3.10) is given by 

@ ( t ,  T ) ' I  - [' A ( a l )  dc7,+['A(u1) dc+, [ A ( a 2 )  d a 2 - .  . . (A3.12) 
*I 

7 7 T 

where I is the identity matrix 

and 

A - (  c , u , + ~ c 2 u 2  tc,u,  

5c1u2 &,U, + c2u2 

Hence, the solution to equations (A3.10) and (A3.11) is 

G,( t, t " )  = H( t - t " )@(  t, t " ) .  

(A3.13) 

(A3.14) 

(A3.15) 

A similar procedure gives the solution of (A3.8) and (A3.9) as 

G:( t, t ' )  = H( t '  - t)@'( t ' ,  t )  (A3.16) 

where the symbol T denotes transposition. Equations (A3.15) and (A3.16) directly 
verify that the forward and backward propagators G: and G, for the Riccati equation 
satisfy the reciprocity relation (2.12). 

The solution U of the Riccati equation is obtained in terms of the forward propagator 
GZ by following the operations indicated in (2.13). This gives 

In terms of the backward propagator G,, the solution U becomes 

(A3.17) 

(A3.18) 

The result is identical with that obtained from (A3.17), as expected. 

by direct substitution in (A3.1): 
The validity of (A3.17) as the solution to the Riccati equation can be readily verified 

= b - U C ~ U  QED. 
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Under certain conditions, the Peano-Baker series representation of the fundamental 
matrix @ ( t ,  T )  given in (A3.12) can be summed in a closed form. Such is the case, for 
example, if c1 = 0, i.e., cT = (0, c2) ;  then, the propagators can also be expressed com- 
pactly in terms of exponentials involving the functions u1 and u 2 .  The backward 
propagator G,( r, t"), for example, becomes in this case 

where 

Gll(t, t") =exp(: 1,"' u2(7 )  d r )  

(A3.19) 

( A3.20) 

GI2(f, t") = [ 1"': 1 u1(7) exp(: IT1'' u 2 ( s )  ds) d ~ ]  e x p ( 7  lo1'' ~ ~ ( 7 )  d7) (A3.21) 

Gzl( t, r") = 0 (A3.22) 

G22( t, t " )  = exp c2 u2( 7) dT . ( 1 1 1 "  1 (A3.23) 

Replacing (A3.19) in (A3.18) leads to a fixed-point integral equation for U that can 
be solved to recover-after tedious algebra-the explicit solution given by (A3.4) and 
(A3.5) when c1 = 0. 
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